Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (2024)

Table of Contents
Abstract Funders List of references

Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (1) https://doi.org/10.1002/adfm.202312830 · Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (2)

Journal: Advanced Functional Materials, 2024

Publisher: Wiley

Authors:

  1. Fangqi Liu
  2. Tongtong Wang
  3. Qiang Yu
  4. Zixin Yang
  5. Jingxian Xiong
  6. Xiaolin Zhang
  7. Pengwei Gong
  8. Hongzhen Lin
  9. Jian Wang
  10. Sicong Zhu
  11. Jian Wu

Abstract

AbstractDelocalized electron and phonon structures are directives for rationally tuning the intrinsic physicochemical properties of 2D materials by redistributing electronic density. However, it is still challenging to accurately manipulate the delocalized electron and systematically study the relationships between physiochemical properties and practical nanodevices. Herein, the effects of delocalized electrons engineering on blue‐arsenic‐phosphorus (β‐AsP)‐based practical devices are systematically investigated via implementing vacancies or heteroatom doping. A tendency of carrier conductivity property from “half‐metal” to “metal” is initially found when tuning the electronic structure of β‐AsP with adjustable vacancy concentrations below 2 at% or above 3 at%, which can be ascribed to the introduction of delocalized electrons that cause asymmetric contributions to the electronic states near the implementation site. In optical logic device simulations, broadband response, triangular wave circuit system signal, and reverse polarization anisotropy are achieved by adjusting the vacancy concentration, while extinction ratios are as high as 1561. The electric and thermic‐logic devices realize the highest available reported giant magnetoresistance (MR) up to 1013% and 1039% at vacancy concentrations of 1.67% and 0.89%, respectively, which is significantly superior to the reports. The results shed light on the electronic delocalization strategy of regulating internal structures to achieve highly efficient nanodevices.

Funders

  1. Alexander von Humboldt-Stiftung
  2. National Natural Science Foundation of China
  3. Wuhan University of Science and Technology
  4. Natural Science Foundation of Jiangsu Province

List of references

  1. Qin P., Nature., № 613, с. 485
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (3) https://doi.org/10.1038/s41586-022-05461-y
  2. Ruiz Euler H.‐C., Nat. Nanotechnol., № 15, с. 992
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (4) https://doi.org/10.1038/s41565-020-00779-y
  3. Hossain M., Nano Today., № 42
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (5) https://doi.org/10.1016/j.nantod.2021.101338
  4. Yan T., Adv. Electron. Mater., № 8
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (6) https://doi.org/10.1002/aelm.202101385
  5. Železný J., Nat. Phys., № 15, с. 197
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (7) https://doi.org/10.1038/s41567-018-0402-7
  6. Rojaee R., ACS Nano., № 14, с. 2628
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (8) https://doi.org/10.1021/acsnano.9b08396
  7. Lee Y., Nano Lett., № 22, с. 5094
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (9) https://doi.org/10.1021/acs.nanolett.2c00466
  8. Yip C.‐T., Phys. Rev. Lett., № 125
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (10) https://doi.org/10.1103/PhysRevLett.125.258001
  9. Bedoya‐Pinto A., Science., № 374, с. 616
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (11) https://doi.org/10.1126/science.abd5146
  10. Zeng L., Chem., № 8, с. 632
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (12) https://doi.org/10.1016/j.chempr.2021.11.022
  11. Qu G., Chem. Rev., № 120, с. 2288
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (13) https://doi.org/10.1021/acs.chemrev.9b00445
  12. Liu B., Adv. Mater., № 27, с. 4423
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (14) https://doi.org/10.1002/adma.201501758
  13. Guo Z.‐Y., Proc. Natl. Acad. Sci. USA., № 119
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (15) https://doi.org/10.1073/pnas.2201607119
  14. Liu F., RSC Adv., № 12, с. 3745
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (16) https://doi.org/10.1039/D1RA08154C
  15. Chen C., Nat. Mater., № 22, с. 671
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (17) https://doi.org/10.1038/s41563-023-01552-x
  16. Hu R., Adv. Funct. Mater., № 31
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (18) https://doi.org/10.1002/adfm.202101660
  17. Cai X., Nanoscale., № 11, с. 8260
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (19) https://doi.org/10.1039/C9NR01261C
  18. Zhu Z., Nano Lett., № 15, с. 6042
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (20) https://doi.org/10.1021/acs.nanolett.5b02227
  19. Zhang J., Phys. Chem. Chem. Phys., № 23
  20. Zhao H., Phys. Status Solidi RRL., № 16
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (21) https://doi.org/10.1002/pssr.202200043
  21. Wang F., Energy Environ. Sci., № 16, с. 5154
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (22) https://doi.org/10.1039/D3EE01493B
  22. Zhang C., Nat. Commun., № 12, с. 2516
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (23) https://doi.org/10.1038/s41467-021-22711-1
  23. Wang J., Nano Lett., № 22, с. 8008
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (24) https://doi.org/10.1021/acs.nanolett.2c02611
  24. Huang H., Adv. Funct. Mater., № 30
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (25) https://doi.org/10.1002/adfm.202003889
  25. Kumari P., Mater. Today: Proc., № 43, с. 3297
  26. Pluengphon P., Int. J. Hydrogen Energy., № 44
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (26) https://doi.org/10.1016/j.ijhydene.2019.06.066
  27. Li P., Adv. Funct. Mater., № 30
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (27) https://doi.org/10.1002/adfm.201910059
  28. Chen Y., Nanoscale, № 13, с. 4995
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (28) https://doi.org/10.1039/D0NR08251A
  29. Zheng W., Nat. Phys., № 18, с. 1317
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (29) https://doi.org/10.1038/s41567-022-01719-4
  30. Du M., Nano Energy., № 89
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (30) https://doi.org/10.1016/j.nanoen.2021.106477
  31. Liu J., Nat. Commun., № 13, с. 3855
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (31) https://doi.org/10.1038/s41467-022-31606-8
  32. Yu Q., Adv. Funct. Mater., № 33
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (32) https://doi.org/10.1002/adfm.202307368
  33. Poehler T. O., Energy Environ. Sci., № 5, с. 8110
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (33) https://doi.org/10.1039/c2ee22124a
  34. Yang J., Mater. Horiz., № 9, с. 1422
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (34) https://doi.org/10.1039/D2MH00080F
  35. Xu H.‐X., Adv. Opt. Mater., № 9
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (35) https://doi.org/10.1002/adom.202100190
  36. Yan Z.‐Y., Phys. Rev. Appl., № 17
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (36) https://doi.org/10.1103/PhysRevApplied.17.054027
  37. Kresse G., Phys. Rev. B, № 47, с. 558
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (37) https://doi.org/10.1103/PhysRevB.47.558
  38. Kresse G., Phys. Rev. B., № 54
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (38) https://doi.org/10.1103/PhysRevB.54.11169
  39. Taylor J., Phys. Rev. B., № 63
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (39) https://doi.org/10.1103/PhysRevB.63.245407
  40. Smidstrup S., J. Phys.: Condens. Mater., № 32
  41. Zhang Y., Appl. Surf. Sci., № 560
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (40) https://doi.org/10.1016/j.apsusc.2021.149907
  42. Gao S., Phys. Chem. Chem. Phys., № 23, с. 6075
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (41) https://doi.org/10.1039/D1CP00255D
  43. Hou Y., Appl. Phys. Lett., № 118
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (42) https://doi.org/10.1063/5.0031719
  44. Chu F., J. Mater. Chem. C., № 6, с. 2509
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (43) https://doi.org/10.1039/C7TC05488B
  45. Li S., Nanoscale, № 10, с. 7694
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (44) https://doi.org/10.1039/C8NR00484F
  46. Gao S., Nanophotonics, № 9, с. 1931
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (45) https://doi.org/10.1515/nanoph-2019-0435
  47. Masuda K., Phys. Rev. B., № 103
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (46) https://doi.org/10.1103/PhysRevB.103.064427
  48. Yu H., Phys. Chem. Chem. Phys., № 24, с. 3451
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (47) https://doi.org/10.1039/D1CP04895C
  49. Yang J., Phys. Rev. Appl., № 16
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (48) https://doi.org/10.1103/PhysRevApplied.16.024011
  50. Wang B., Nanoscale., № 8, с. 3432
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (49) https://doi.org/10.1039/C5NR06585B
  51. Zhang X., ACS Appl. Nano Mater., № 5
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (50) https://doi.org/10.1021/acsanm.2c03322
  52. Feng Y., Appl. Phys. Lett., № 116
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (51) https://doi.org/10.1063/1.5128204
  53. Zhang S.‐J., ACS Appl. Mater. Interfaces., № 13
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (52) https://doi.org/10.1021/acsami.1c18848
  54. Zheng C., Phys. B, № 626
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (53) https://doi.org/10.1016/j.physb.2021.413580
  55. Ni Y., ACS Omega, № 6
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (54) https://doi.org/10.1021/acsomega.1c01640
  56. Wang T., Phys. E, № 146
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (55) https://doi.org/10.1016/j.physe.2022.115529
  57. Gao X.‐J., Chem. Phys. Lett., № 699, с. 250
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (56) https://doi.org/10.1016/j.cplett.2018.03.073
  58. Lv Y.‐Z., Chin. Phys. Lett., № 36
    Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (57) https://doi.org/10.1088/0256-307X/36/1/017301

About this publication

Number of citations 0
Number of works in the list of references 58
Journal indexed in Scopus Yes
Journal indexed in Web of Science Yes
Electronic Delocalization Engineering of β‐AsP Enabled High‐Efficient Multisource Logic Nanodevices (2024)
Top Articles
Latest Posts
Article information

Author: Laurine Ryan

Last Updated:

Views: 6159

Rating: 4.7 / 5 (57 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Laurine Ryan

Birthday: 1994-12-23

Address: Suite 751 871 Lissette Throughway, West Kittie, NH 41603

Phone: +2366831109631

Job: Sales Producer

Hobby: Creative writing, Motor sports, Do it yourself, Skateboarding, Coffee roasting, Calligraphy, Stand-up comedy

Introduction: My name is Laurine Ryan, I am a adorable, fair, graceful, spotless, gorgeous, homely, cooperative person who loves writing and wants to share my knowledge and understanding with you.