Shifts in magnetic mineral assemblages support ocean deoxygenation before the end-Permian mass extinction (2024)

References

  1. Burgess, S. D., Bowring, S. A. & Shen, S. Z. High-precision timeline for Earth’s most severe extinction. Proc. Natl. Acad. Sci. USA 111, 3316–3321 (2014).

    Article CAS Google Scholar

  2. Fan, J. X. et al. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science 367, 272–277 (2020).

    Article CAS Google Scholar

  3. Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in earth history. Proc. Natl. Acad. Sci. USA 113, e6325–E6334 (2016).

    Article CAS Google Scholar

  4. Fang, Z. et al. Ocean redox changes from the latest Permian to Early Triassic recorded by chromium isotopes. Earth Planet. Sci. Lett. 570, 117050 (2021).

    Article CAS Google Scholar

  5. Shen, Y. et al. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nat. Commun. 2, 1–5 (2011).

    Article Google Scholar

  6. Zhang, F. et al. Congruent Permian-Triassic δ238U records at Panthalassic and Tethyan sites: Confirmation of global-oceanic anoxia and validation of the U-isotope paleoredox proxy. Geology 46, 327–330 (2018).

    Article CAS Google Scholar

  7. Newby, S. M., Owens, J. D., Schoepfer, S. D. & Algeo, T. J. Transient ocean oxygenation at end-Permian mass extinction onset shown by thallium isotopes. Nat. Geosci. 14, 678–683 (2021).

    Article CAS Google Scholar

  8. Cao, C. et al. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet. Sci. Lett. 281, 188–201 (2009).

    Article CAS Google Scholar

  9. Grice, K. et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307, 706–709 (2005).

    Article CAS Google Scholar

  10. Xiang, L. et al. Oceanic redox evolution around the end-Permian mass extinction at Meishan, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 544, 109626 (2020).

    Article Google Scholar

  11. Elrick, M. et al. Global-ocean redox variation during the middle-late Permian through Early Triassic based on uranium isotope and Th/U trends of marine carbonates. Geology 45, 163–166 (2017).

    Article CAS Google Scholar

  12. Jiang, Z. et al. The magnetic and color reflectance properties of hematite: From Earth to Mars. Rev. Geophys. 60 https://doi.org/10.1029/2020rg000698 (2022).

  13. O’Reilly, W. Rock and Mineral Magnetism. (Springer, Boston, MA., 1984).

  14. Lepre, C. J. & Olsen, P. E. Hematite reconstruction of Late Triassic hydroclimate over the Colorado Plateau. Proc. Natl. Acad. Sci. 118, e2004343118 (2021).

    Article CAS Google Scholar

  15. Deng, C., Shaw, J., Liu, Q., Pan, Y. & Zhu, R. Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: Implications for Quaternary development of Asian aridification and cooling. Earth Planet. Sci. Lett. 241, 248–259 (2006).

    Article CAS Google Scholar

  16. Slotznick, S. P., Swanson-Hysell, N. L. & Sperling, E. A. Oxygenated Mesoproterozoic lake revealed through magnetic mineralogy. Proc. Natl. Acad. Sci. USA 115, 12938–12943 (2018).

    Article CAS Google Scholar

  17. Larrasoaña, J. C., Roberts, A. P., Stoner, J. S., Richter, C. & Wehausen, R. A new proxy for bottom-water ventilation in the eastern Mediterranean based on diagenetically controlled magnetic properties of sapropel-bearing sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 190, 221–242 (2003).

    Article Google Scholar

  18. Wu, L., Kravchinsky, V. A. & Potter, D. K. Apparent polar wander paths of the major Chinese blocks since the Late Paleozoic: Toward restoring the amalgamation history of east Eurasia. Earth Sci. Rev. 171, 492–519 (2017).

    Article Google Scholar

  19. Shen, S. Z. et al. Calibrating the end-Permian mass extinction. Science 334, 1367–1372 (2011).

    Article CAS Google Scholar

  20. Liu, S. A. et al. Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction. Geology 45, 343–346 (2017).

    Article CAS Google Scholar

  21. Sun, H. et al. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary. Proc. Natl. Acad. Sci. USA 115, 3782–3787 (2018).

    Article CAS Google Scholar

  22. Wu, H. et al. Time-calibrated Milankovitch cycles for the late Permian. Nat. Commun. 4, 2452 (2013).

    Article Google Scholar

  23. Yuan, D. X. et al. Revised conodont-based integrated high-resolution timescale for the Changhsingian Stage and end-Permian extinction interval at the Meishan sections, South China. Lithos 204, 220–245 (2014).

    Article CAS Google Scholar

  24. Zhang, M. et al. Magnetostratigraphy across the end-Permian mass extinction event from the Meishan sections, southeastern China. Geology 49, 1289–1294 (2021).

    Article CAS Google Scholar

  25. Roberts, A. P., Cui, Y. & Verosub, K. L. Wasp‐waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J. Geophys. Res.: Solid Earth 100, 17909–17924 (1995).

    Article Google Scholar

  26. Robertson, D. J. & France, D. E. Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetization acquisition curves. Phys. Earth Planet. Inter. 82, 223–234 (1994).

    Article CAS Google Scholar

  27. Kruiver, P. P., Dekkers, M. J. & Heslop, D. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet. Sci. Lett. 189, 269–276 (2001).

    Article CAS Google Scholar

  28. Bloemendal, J., King, J., Hall, F. & Doh, S. J. Rock magnetism of Late Neogene and Pleistocene deep‐sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology. J. Geophys. Res.: Solid Earth 97, 4361–4375 (1992).

    Article Google Scholar

  29. Tadić, M. et al. Synthesis, morphology, microstructure and magnetic properties of hematite submicron particles. J. Alloys Compd. 509, 7639–7644 (2011).

    Article Google Scholar

  30. Kosmulski, M., Durand-Vidal, S., Mączka, E. & Rosenholm, J. B. Morphology of synthetic goethite particles. J. Colloid Interface Sci. 271, 261–269 (2004).

    Article CAS Google Scholar

  31. Dunlop, D. J. & Özdemir, Ö. Rock Magnetism: Fundamentals and Frontiers. (Cambridge University Press, 1997).

  32. Song, H. et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth Planet. Sci. Lett. 353-354, 12–21 (2012).

    Article CAS Google Scholar

  33. Roberts, A. P. Magnetic mineral diagenesis. Earth Sci. Rev. 151, 1–47 (2015).

    Article CAS Google Scholar

  34. Algeo, T. J. & Twitchett, R. J. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38, 1023–1026 (2010).

    Article Google Scholar

  35. Song, H. et al. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic. Earth Planet. Sci. Lett. 424, 140–147 (2015).

    Article CAS Google Scholar

  36. Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).

    Article Google Scholar

  37. Shen, S. Z. et al. A sudden end-Permian mass extinction in South China. Geol. Soc. Am. Bull. 131, 205–223 (2019).

    Article CAS Google Scholar

  38. Jin, Y. et al. The Global Boundary Stratotype Section and Point (GSSP) for the base of Changhsingian Stage (Upper Permian). Episodes 29, 175–182 (2006).

    Article Google Scholar

  39. Zhang, K. & Shields, G. A. Sedimentary Ce anomalies: Secular change and implications for paleoenvironmental evolution. Earth Sci. Rev. 229, 104015 (2022).

    Article CAS Google Scholar

  40. Liu, X.-M., Hardisty, D. S., Lyons, T. W. & Swart, P. K. Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank. Geochim. Cosmochim. Acta 248, 25–42 (2019).

    Article CAS Google Scholar

  41. Banner, J. L., Hanson, G. N. & Meyers, W. J. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian); implications for REE mobility during carbonate diagenesis. J. Sediment. Res. 58, 415–432 (1988).

    CAS Google Scholar

  42. Liu, X.-M. et al. A persistently low level of atmospheric oxygen in Earth’s middle age. Nat. Commun. 12 https://doi.org/10.1038/s41467-020-20484-7 (2021).

  43. Bolhar, R. & Van Kranendonk, M. J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Res 155, 229–250 (2007).

    Article CAS Google Scholar

  44. Frimmel, H. E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem. Geol. 258, 338–353 (2009).

    Article CAS Google Scholar

  45. Tostevin, R. et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem. Geol. 438, 146–162 (2016).

    Article CAS Google Scholar

  46. Li, M. et al. Nickel isotopes link Siberian Traps aerosol particles to the end-Permian mass extinction. Nat. Commun. 12, 1–7 (2021).

    Google Scholar

  47. Jin, Y. G. et al. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science 289, 432–436 (2000).

    Article CAS Google Scholar

  48. Wang, Y. et al. Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology 40, 113–129 (2014).

    Article Google Scholar

  49. Wei, H., Tang, Z., Yan, D., Wang, J. & Roberts, A. P. Guadalupian (Middle Permian) ocean redox evolution in South China and its implications for mass extinction. Chem. Geol. 530, 119318 (2019).

    Article CAS Google Scholar

  50. Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 1–12 (2019).

    Article Google Scholar

  51. Gastaldo, R. A. et al. The base of the Lystrosaurus Assemblage Zone, Karoo Basin, predates the end-Permian marine extinction. Nat. Commun. 11, 1–8 (2020).

    Article Google Scholar

  52. Chu, D. et al. Metal-induced stress in survivor plants following the end-Permian collapse of land ecosystems. Geology 49, 657–661 (2021).

    Article CAS Google Scholar

  53. Fielding, C. R. et al. Sedimentology of the continental end-Permian extinction event in the Sydney Basin, eastern Australia. Sedimentology 68, 30-62 (2021).

  54. Chapman, T., Milan, L. A., Metcalfe, I., Blevin, P. L. & Crowley, J. Pulses in silicic arc magmatism initiate end-Permian climate instability and extinction. Nat. Geosci. 15, 411–416 (2022).

    Article CAS Google Scholar

  55. Grasby, S. E., Sanei, H. & Beauchamp, B. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat. Geosci. 4, 104–107 (2011).

    Article CAS Google Scholar

  56. Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011).

    Article CAS Google Scholar

  57. Zhang, H. et al. Felsic volcanism as a factor driving the end-Permian mass extinction. Sci. Adv. 7, eabh1390 (2021).

    Article CAS Google Scholar

  58. Shen, J., Zhang, Y. G., Yang, H., Xie, S. & Pearson, A. Early and late phases of the Permian–Triassic mass extinction marked by different atmospheric CO2 regimes. Nat. Geosci. 15, 1–6 (2022).

    Article Google Scholar

  59. Wu, Y. et al. Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction. Nat. Commun. 12, 2137 (2021).

    Article CAS Google Scholar

  60. Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).

    Article Google Scholar

  61. Schobben, M. et al. A nutrient control on marine anoxia during the end-Permian mass extinction. Nat. Geosci. 13, 640–646 (2020).

    Article CAS Google Scholar

  62. Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon‐dated depth chronologies.J. Royal Stat. Soc. Series C. Appl Stat 57, 399–418 (2008).

    Article Google Scholar

  63. Parnell, A. C., Haslett, J., Allen, J. R. M., Buck, C. E. & Huntley, B. A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quat. Sci. Rev. 27, 1872–1885 (2008).

    Article Google Scholar

  64. Strehlau, J. H., Hegner, L. A., Strauss, B. E., Feinberg, J. M. & Penn, R. L. Simple and efficient separation of magnetic minerals from speleothems and other carbonates. J. Sediment. Res. 84, 1096–1106 (2014).

    Article CAS Google Scholar

  65. Jenner, G. A., Longerich, H. P., Jackson, S. E. & Fryer, B. J. ICP-MS — A powerful tool for high-precision trace-element analysis in Earth sciences: Evidence from analysis of selected U.S.G.S. reference samples. Chem. Geol. 83, 133–148 (1990).

    Article CAS Google Scholar

  66. Taylor, S. R. & McLennan, S. M. The continental crust: Its composition and evolution. 1–312 (Blackwell Scientific Pub.,Palo Alto, CA, 1985).

  67. Pourmand, A., Dauphas, N. & Ireland, T. J. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chem. Geol. 291, 38–54 (2012).

    Article CAS Google Scholar

  68. Lécuyer, C. et al. δ18O and REE contents of phosphatic brachiopods: a comparison between modern and lower Paleozoic populations. Geochim. Cosmochim. Acta 62, 2429–2436 (1998).

    Article Google Scholar

  69. Blakey, R.C. Triassic global paleogeographic map (250 Ma). Global Paleogeography and Tectonics in Deep Time Series (Deep Time Maps™,2020). https://deeptimemaps.com/map-lists-thumbnails/global-paleogeography-and-tectonics-in-deep-time/.

Download references

Shifts in magnetic mineral assemblages support ocean deoxygenation before the end-Permian mass extinction (2024)
Top Articles
Latest Posts
Article information

Author: Nathanael Baumbach

Last Updated:

Views: 5798

Rating: 4.4 / 5 (55 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Nathanael Baumbach

Birthday: 1998-12-02

Address: Apt. 829 751 Glover View, West Orlando, IN 22436

Phone: +901025288581

Job: Internal IT Coordinator

Hobby: Gunsmithing, Motor sports, Flying, Skiing, Hooping, Lego building, Ice skating

Introduction: My name is Nathanael Baumbach, I am a fantastic, nice, victorious, brave, healthy, cute, glorious person who loves writing and wants to share my knowledge and understanding with you.